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• Power spectral density (PSD) from surface roughness data –
definitions

• Motivation for 2D PSD measurement

• PSD measurements with three different instruments:
1. Micromap interferometric microscope,
2. Atomic force microscope
3. X-ray Reflectivity and Scattering experimental facility

• Improvement of the Micromap measurements
1. Estimation of 2D MTF
2. Correction of the 2D PSD measurement with the Micromap

• Lower spatial frequency measurements with the LTP and ZYGO

• Conclusions

Outline
SPIE 5921-18
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Two Dimensional Power Spectral Density
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The 2D PSD function may be viewed as a Fourier decomposition of the 2D surface 
height distribution into harmonic basis functions: 

Lx and Ly are the tangential and sagittal dimensions of the measured surface region, A;  u and v
are the spatial frequency variables corresponding to the tangential, x, and sagittal, y, coordinates.

h(x,y)= Cos(2π f0 x)

xy

Cosine grating S2(u,v) ~ δ (u-f0,v) + δ (u+f0,v)
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Two Dimensional Power Spectral Density
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The 2D PSD function may be viewed as a Fourier decomposition of the 2D surface 
height distribution into harmonic basis functions: 

Lx and Ly are the tangential and sagittal dimensions of the measured surface region, A;  u and v
are the spatial frequency variables corresponding to the tangential, x, and sagittal, y, coordinates.

h(x,y)=h0 Cos(2π f0 x) Cos(2π f0 y)

xy v
u

2D Cosine grating

-f0

f0

S2(u,v) ~ δ (u-f0,v-f0) + δ (u-f0,v+f0)   
+δ (u+f0,v-f0) + δ (u+f0,v+f0)

f0

-f0
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In the case of discreet measurements, 2D PSD distribution can be evaluated from

M and N are the number of pixels and Δx and Δy are the pixel dimensions in the tangential 
and sagittal directions, respectively; Fl,k are the elements of the Fourier transform matrix
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Two Dimensional Power Spectral Density

One-sided (positive frequency only) 1D PSD distribution can be evaluated from 2D PSD:
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Motivation for 2D PSD measurement
→ PSD provides rigorous information on surface properties

Micromap measurements with a X-ray grating with uniform groove density
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Micromap measurements 
with a   X-ray grating with 
variable groove density

(Proceedings of SPIE 5858-10)

β=(0.055±0.006) μm-1m-2

x

y

10×

410−≈fδ μm-1

Motivation for 2D PSD measurement
→ PSD provides rigorous information on surface properties
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→ PSD is based on essential information on surface properties

FOR ALL THESE CASES THE ROUGHNESS VALUE IS THE SAME!

Roughness (rms): 
21
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Motivation for 2D PSD measurement
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FOR ALL THESE CASES THE ROUGHNESS VALUE IS THE SAME!

Roughness (rms): 
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→ PSD contains essential information on surface properties
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Motivation for 2D PSD measurement
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Scattering from a real surface
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Transformation( ) PSD∝

→ 2D PSD allows calculation of 3D scattering of X-rays

Based on correlation function parameterized with σrms and lcor

Based on PSD parameterized with S2(0) and n

Motivation for 2D PSD measurement
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LBNL X-ray optics Metrology

The metrology instrumentation
MicromapTM-570 interferometric microscope
Digital Instruments Dimension 3100 Atomic Force Microscope
X-ray Reflectivity and Scattering experimental facility
ZygoTM GPI 6-in interferometer
LTP II long trace profiler 
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Micromap-570 Interferometric Microscope

Tangential PSD spectra

Sagittal PSD spectra

• Need Modulation Transfer Function (MTF) correction
• Isotropic mirror surface topography!

The Micromap CCD 
camera read-out 
asymmetry was 

corrected 

SPIE 5858-10

PSD measurements
with a Gold coated stainless steel mirror 
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Digital Instruments Dimension 3100 Atomic Force Microscope
Micromap-570 Interferometric Microscope

• Isotropic mirror surface topography!
• Need cross-check at lower spatial frequencies

2D PSD distribution 
measured over 5 × 5 μm2

area with 512 × 512 
elements (0.2 - 50 μ m-1)

PSD measurements
with a Gold coated stainless steel mirror 
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Digital Instruments Dimension 3100 Atomic Force Microscope
Micromap-570 Interferometric Microscope

X-ray Reflectivity and Scattering Facility at the LBNL Center for X-ray Optics

PSD measurements
with a Gold coated stainless steel mirror 

PSD spectra are 
extracted from the 

X-ray reflectivity and 
scattering 

measurements, 
assuming isotropic 

mirror surface 
topography
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Essentially consistent results
Inverse-power-law approximation at spatial frequencies from 3×10-4 to 10 μm-1

Possibility to determine 2D MTF of the Micromap and to correct 2D PSD

Comparison of the PSD measurements
with a Gold coated stainless steel mirror
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1. Surface isotropic topography:

2. Inverse-power-law approximation:
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Estimation of the Micromap 2D MTF
from PSDs of a Gold coated stainless steel mirror 
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Problem:

The found 2D MTF contains the 
noise of the measured PSD

Solution:

To smooth the 2D MTF 
[J.C. Stover, Optical Scattering, SPIE Press, 1995]
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Estimation of the Micromap 2D MTF
from PSDs of a Gold coated stainless steel mirror 
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To smooth the 2D MTF 
3. Assume isotropic topography of the MTF 
and fit the 1D MTFs

[J.C. Stover, Optical Scattering, SPIE Press, 1995]
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3. Assume isotropic topography of the MTF 
and fit the 1D MTFs
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with an analytical function:

μm73.2≅a
[J.C. Stover, Optical Scattering, SPIE Press, 1995]
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1. Surface isotropic topography:

2. Inverse-power-law approximation:

Estimation of the Micromap 2D MTF
from PSDs of a Gold coated stainless steel mirror 

3. Assume isotropic topography of the MTF 
and fit the 1D MTFs with an analytical 
function:

4. Integrate 1D MTF to get smooth 2D MTFs

5. Apply the 2D MTF to correct the 2D PSDs

[J.C. Stover, Optical Scattering, SPIE Press, 1995]
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1. Surface isotropic topography:

2. Inverse-power-law approximation:

3. Assume isotropic topography of the MTF 
and fit the 1D MTFs with an analytical 
function:

4. Integrate 1D MTF to get smooth 2D MTFs

5. Apply the 2D MTF to correct the 2D PSDs

MTF Correction of the Micromap PSDs
measured with the Gold coated stainless steel mirror

10x objective

[J.C. Stover, Optical Scattering, SPIE Press, 1995]
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Digital Instruments Dimension 3100 Atomic Force Microscope
Micromap-570 Interferometric Microscope

X-ray Reflectivity and Scattering Facility at the LBNL Center for X-ray Optics

PSD measurements SUMMARY
with a Gold coated stainless steel mirror

Long Trace Profiler LTP-II
ZYGO GPI interferometer
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PSD measurements
with a Gold coated stainless steel mirror

ZYGO GPI interferometer

Data detrended with piston and tilt 

Calculated PSD of a tilted ideal flat surface

Same data detrended with a second 
power polynomial function

Fitted inverse-power-law approximation 
with power index of -2.15

Problem:

Lower frequency PSD spectra, with high 
log-log steepness approximated with an 
inverse-power-law with large ( ) 
index, strongly depend on detrending.

2≥γ
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Conclusions

Consistence and mutual supplementation of PSD measurements performed 
with different instruments was demonstrated.

A cross-check measurement was used for finding the MTF of the Micromap.

The MTF correction procedure takes advantage of the isotropic topography of 
the test surface, the isotropy of the 2D MTF, and the inverse-power-law 
approximation of the PSD distribution observed for the spatial frequency range, 
corresponding to the Micromap.

Lower frequency PSD measurements with the LTP and ZYGO GPI require 
additional cross-checks with a higher resolution instrument to resolve 
discrepancies and validate the results

Next: - Application of the PSD data to X-ray scattering calculations

- Investigation of the reliability of lower frequency PSD measurements

- Development of a test surface standard for 2D PSD measurement
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